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MRC-GAN: Virtual Trial Emulations and Outcomes 

Abstract This report describes the virtual trial emulation outcomes of the MRC-GAN research project, including 
(a) evaluation of the synthetic data sampled from the virtual trial emulation models and (b) comparison of the 
outcomes from the virtual trial emulations against the LEAD-5 trial and (c) extended counterfactual emulations to 
predict the effect sizes on real patient data. We have mainly conducted two types of experiments on the virtual 
trial emulations in the context of T2DM treatment with three different drugs, namely GLP-1, basal insulin and 
placebo. The first type of experiments is focused on the replication of the existing LEAD-5 trial, and the second 
type of experiments attempts to emulate counterfactual scenarios where different drugs are applied to the same 
patients to supply evidence for clinical decision making. The effect sizes are estimated with both average treatment 
effect and difference-in-differences between pairwise drugs. Our trial emulations show that when the patients meet 
the LEAD-5 patient baseline characteristics, the trial emulations produce the same ranking between the three drugs 
as what LEAD-5 have concluded. We have experimented with independent sampling of virtual patients for the 
three treatment (drug) groups, counterfactual emulations on the same group of virtual patients, and counterfactual 
emulations on real patients. All results have all suggested that GLP-1 has the best performance in terms of HbA1c, 
systolic blood pressure and BMI reduction if the patients meet the inclusion criteria of LEAD-5. However, the 
experiments with real patients who do not fall into the baseline characteristics of LEAD-5 have presented different 
performance rankings between the drugs. These results suggest that the LEAD-5 trial outcomes cannot be simply 
extrapolated to cover other patient populations. To this end, the virtual trial emulation models and tools are 
potentially very useful in terms of providing evidence to support the extrapolation of clinical trials for real-world 
clinical practice. 

The report is organised as follows: Section 1 gives the general background of the project. Section 2 presents the 
results from the assessment of the synthetic data quality ; and Section 3 shows trial emulation process and their 
results. Section 4 draw the conclusions.  

1. Project Background  

Health data contain important knowledge that enables clinical research to assess treatment effect in real-world 
settings. However, there are significant limitations in real-world health data: they are typically imbalanced across 
different population, diseases and interventions; they contain bias, noise and missing measurements; the process 
of removing patient identifiable information may take significant time and effort, which also faces the risk of 
deleting valuable information from the original data. More importantly, observational studies with real-world 
health data do not involve hypothetical interventions, and researchers cannot test their hypotheses on treatment 
effect from different drugs and treatments with the data that are collected retrospectively.   

The MRC-GAN project is designed to investigate an alternative approach to support clinical research through 
the use of synthetic data. We study the feasibility of running virtual clinical trial emulations to extrapolate 
randomised clinical trials to cover real-world populations, which supports experiments with hypothetical virtual 
interventions to answer a range of clinical questions with respect to treatment effects. The emulations generate 
synthetic populations that preserve the same value for research as real patient data under the support of the latest 
generative AI and causality learning technology. We have studied the feasibility of this trial emulation approach 
through a specific use case in the context of Type 2 diabetes mellites (T2DM). The AI model has been trained with 
the SCI Diabetes data on the Safe Haven platform [1]. SCI Diabetes in Safe Haven is a good dataset to use in this 
study. This is an inclusive national dataset of individuals with diabetes containing a broad range of longitudinal 
demographic, phenotypic, biochemical and screening data. There are approximately 300K individuals with 
diabetes. Over 3K individuals with MODY (Maturity-onset diabetes of the young) are recorded with certainty 
(genetic information) along with records of individuals with negative genetic test results. 

The primary research questions include: 
• Can we generate synthetic data that preserve the same value for research as real-world health data? 
• Can we perform virtual clinical trial emulations by discovering correct causal relations from the synthetic 

data? 
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To answer these research questions, we have carried out experiments to assess the synthetic data quality and 
compare the trial emulation outcomes with the LEAD-5 trial [2], which is an existing trial that we have tried to 
emulate under a confirmative study framework to test the trial emulation models.  

2. The Emulation Model  

2.1 Learning core causality model 
To run trial emulations with either observational or synthetic data, we need to build a simulation model that 
captures causal relations between multiple variables through causality learning. In this project, this is achieved by 
learning how to generate data in a generative process.  

Notation: We use a random vector 𝑿 ∈ ℝ$ to denote an observation with d variables, 𝑋&, i =1,…,d, and 𝑿( ∈ ℝ$ 
to denote synthetic data. 𝑃(𝑿) and 𝑃,𝑿(-	are their distributions.  
Further, let 𝐺 = (𝑉, 𝐸) denote a directed acyclic graph (DAG) with d nodes in space 𝔻. 𝐴 ∈ ℝ$×$  is the adjacent 
matrix to represent G, where [𝐴]89 ≠ 0 indicate the existence of a weighted directed edge between vertex i and j. 
𝒇(𝑿; 𝒁;𝑊@,… ,𝑊B) denotes a vector function with input 𝑿 and 𝒁, and 𝑊@,… ,𝑊B are its parameters (i.e. weights 
in a L-layer neural network). Note, bold text (e.g., f) stands for a vector with its scalar components 𝑓8. Namely 
𝒇 = (𝑓@, … , 𝑓$).	 m denotes the dimension of noise vector 𝒁8. 

Formally, we describe the causality learning problem to build the model, together with the assumptions involved 
and the learning process as follows:  
Problem statement: Given n independent and identically distributed observations X, we learn a DAG GÎ	𝔻 to 
match the underlying joint distribution 𝑃(𝑿) of the observations. G entails a structural equation model (SEM) that 
describes the data generative process 𝑓8:	ℝ$ → 	ℝ at each node 𝑋8,  

𝔼[𝑋8	|𝑋IJ(8)] = 	𝑔8(𝑓8(𝑿))	                                                                           (1) 
where pa(i) denotes the parents of node 𝑋8 in G. 𝑔8:	ℝ → ℝ is the so-called link function.  
Assumptions: We make several basic assumptions for the causality learning (a) Faithfulness: The variables in the 
dataset are probabilistically dependent if they are causally connected in the underlying causal graph. This 
assumption allows us to learn causal graph from the data distributions; (b) Causal sufficiency: There is no 
unobserved confounder that produces bias in the estimated causal effect. This assumption allows us to infer causal 
graph with observed data distributions only; (c) Model identifiability: the link function within the causal model is 
an additive noise model (ANM). Namely, we select link function 𝑔8 in Eqn. (1) to be an additive noise model to 
realise noise 𝒁 ∈ ℝ$×L 𝒁8 ∈ ℝL sampling in the generative process:  

𝑿(,𝑋M@, … , 𝑋M$- = 	𝒇(𝑿; 𝒁;𝑊@,… ,𝑊B) = 	𝒇(𝑿;𝑊@,… ,𝑊B) + 	𝒁	                                 (2) 

	𝑋M8 = 𝑓8,𝑿; 𝒁8;𝑊8
@, … ,𝑊8

B-, 𝑖 = 1,…𝑑 

where 𝑿( are synthetic data samples. According to [Hoyer et al 2009], this additive noise nonlinear model is 
identifiable if 	𝑓8 is three times differentiable and none-liner. With this identifiability assumption, we can uniquely 
identify the underlying DAG from the data distribution. 
Temporal constraints: Temporal information provides a natural causal order (i.e., the proceeding variable 𝑋9  of 
𝑋8 cannot be its cause). This imposes the so-called temporal causal constraint. 

By applying the temporal causal constraints, we divide the variables into 3 main categories, including treatments, 
post-treatment measurements and the confounders that involve patient demographics, pre-treatment measurements 
and pre(vious)-treatments. The overall causal structure is shown in Figure 1. In addition to the direct causal link 
between treatment and post-treatment measurements, we account for confounding effects from demographics, pre-
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treatment measurements and previous treatment 
to the treatment assignments and post-treatment 
measurements. Through learning from the data 
distribution X, we infer the exact causal graph 
structure between the variables, together with 
the structural equations 𝒇 that are associated to 
the graph to enable synthetic data generation for 
trial emulation.  

Most of the confounders and post-treatment 
measurements are continuous variables. We 
consider each drug as a separate discrete 
variable. To reduce the number of possible drug 
combinations, and to account for the 
confounding effects imposed by other prescribed drugs, we categorise all drugs into their corresponding classes. 
This allows us to model the ‘global’ causal effects of each drug, under the assumption that all drugs within each 
class cause similar effects to a given patients’ features. Thus, the treatment (drug) nodes are represented by binary 
variables. Each drug is associated with one designated binary node. The node is set to 1 if the associated drug is 
applied to patients in the treatment, and 0 otherwise.  
Causality learning with adversarial loss To learn the model from X, we combine causality learning and 
generative adversarial learning to simultaneously learn causal structure and functions for synthetic data generation, 
We use the Wasserstein GAN with a gradient penalty loss[3]. This architecture makes use of a discriminator 
network whose role is to act as a ‘critic’ to inform a separate generator network of how realistic its generated 
patients are. The causality learning follows the general framework that was recently proposed by [4] by applying 
acyclic constraints to the DAGs learning. Under the faithfulness and model identifiability assumptions, the 
generative process can only produce same data distribution 𝑿(	equivalent to X if the model entails the correct causal 
structure.  
Conditional Generator: Without loss of generality, we use neural networks to approximate and learn 𝒇	 in the 
generative model Eqn.(2). Specifically, each variable 𝑋8 is modelled with a fully connected neural network of L 
hidden layers 𝑓8(𝑿;𝑊8

@, … ,𝑊8
B), where 𝑊8

R is the weights (&bias) of the lth layer. Given observations X, 𝒇 =
(𝑓@, … , 𝑓$) is learned through optimisation of the function parameters ,𝑊8

@, … ,𝑊8
B-,  ∀𝑖 = 1,…𝑑. 

	𝑓8,𝑿; 𝑍8;𝑊8
@, … ,𝑊8

B- is a conditional generator. 
Discriminator: The discriminator 𝐷V (𝜃 denotes its parameters) takes either X or 𝑿( to measure the distance 
between the distributions 𝑃(𝑿) and 𝑃,𝑿(-. 

Loss function: The loss function 𝐿 involves the generative adversarial loss term. It also involves a gradient penalty 
term (WGAN-GP) [Gulrajani2017] as follows: 

𝐿 = 𝔼𝑿~Z(𝑿)[𝐷V(𝑿)] − 𝔼𝒁~Z(𝒁)\𝐷V,𝒇(𝒁)-] + 𝜆𝔼𝑿(~Z(𝑿()\(∥ ∇ab𝐷V,𝑿(- ∥c− 1)c]                                 (3) 
where  𝒁~𝑃(𝒁) is a process to sample 𝑍8 at each generator. As explained in Eqn.(3), the noise sampling is 
implemented with ANM in this work.  

The adversarial loss training minimises the difference between the true data distribution 𝑃(𝑿) and synthetic data 
distribution 𝑃(𝑿() by discovering the right causal structure (DAG) in the generative process (Eqn.(1) and (2)). 
Under the ANM assumption (which is an identifiable model), we can only achieve global minimum (i.e. 𝑃(𝑿)  = 
𝑃(𝑿()if a true causal structure is discovered.  

Acyclic constraints:  The optimisation is subject to an acyclic constraint ℎ(𝐴) = 𝑡𝑟(exp(𝐴 ∘ 𝐴)) − 𝑑 [4] or 

ℎ(𝐴) = 𝑡𝑟 klI +𝐴 ∘ n$o
$
p − 𝑑 [5,6], where A is the adjacent matrix to represent G. Similar to [6, 7]. The adjacency 

matrix A that represents G is defined implicitly through the weights of these neural networks – more specifically, 
we follow the method in [6] by defining [𝐴]89 as the 𝑙cnorm of the jth column in 𝑊8

@, which determines whether 
𝑋9 is a cause of 𝑋8.  

 

Figure 1 Overall causal structure between treatment, post 
measurements and confounders 
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Synthetic data generation through sampling After training, the generative causal model (Eqn.(1) and (2)) allows 
synthetic data generation via data sampling from the learned distribution 𝑃,𝑿(-. Specifically, the conditional 
generator at node i:		𝑋M8 = 𝑓8,𝑿; 𝒁8;𝑊8

@,𝑊8
c- takes samples from its conditional probability distribution 

𝑷,𝑋8s𝑋IJ(8)-. Together, this allows sampling to generate samples 𝑿( from the underlying joint distribution 𝑃(𝑿), 
which is factorised with the local conditional probability distributions. 

2.2 Training & Technical validation  
2.2.1 Datasets  
The dataset consists of an array of clinical variables, drug prescriptions, and demographics variables for 56,476 
unique patients with T2DM. Table 1 provides an overview of the datasets involved in the study. After the pre-
processing and data selection, the datasets include 78 demographics variables (e.g. ability to self-care, BMI, age, 
alcohol status, blood pressure); 362 laboratory variables (e.g. biochemistry measurement such as glucose); 123 
drugs (e.g. aspirin, liraglutide), and other specialist medical records. 

Table 1: Overview of the Real-world Datasets 
GPLES  Local Enhanced Service reported data from GP surgeries covering a range of long- term 

health conditions managed in primary care. 
Pharmacy  Drug data including their prescription and dispense dataset 
SCI_Diabetes  A fully integrated shared electronic patient record to support treatment of NHS Scotland 

patients with Diabetes. 
SCI_Store SCI Store is a data repository which retains patient information at a health board level, 

accepts various clinical laboratory reports, and includes patient episode tracking. 
SMR00 An SMR00 is generated for outpatients receiving care in the specialties listed when they 

attend different types of clinics. 
SMR01 An SMR01 is generated for patients receiving care in General / Acute specialties when 

they are admitted as inpatients under various circumstances. 

Pre-processing. For our analysis, we prepared the SCI-Diabetes dataset to represent each patient’s record as a 
series of pre- and post-treatment measurements collected over time in response to different treatments, where each 
new treatment marked a distinct point in time. Note some patients received multiple drugs at one time. Pre-
measurements were collected from 9 months prior to treatment, and post-measurements from 12 months following 
treatment. If multiple measurements were taken during these periods, we use the median values. On this basis, we 
made the simplifying assumption that each set of pre- and post-features were independent of those at previous 
time-steps, but whose pre- to post- change is confounded by all treatments given up to that time. This allowed us 
to accumulate the treatments over time to form a new ‘pre-treatment’ feature to encode the passing of time since 
the beginning of treatment. 

Missing data. After pre-processing, we observed a significant proportion of missing data. Performing a hard 
removal of these elements, where patients with either pre- or post-features missing from any category were 
removed from the dataset, reduced the number of available datapoints from 72,958 to 6,674. From this set we 
randomly chose 6,500 samples for model training, upon which we performed a 90/10 split to partition the set into 
training and validation subsets for optimisation and evaluation, respectively. 
2.2.2 Training 
Model and training parameters. To help mitigate the risk of mode collapse, we implemented a PAC-based 
discriminator [9] with a PAC value of 10. Both discriminator and generator networks were optimised with Adam 
using initial learning rates of 3x10-4, that were decayed to 7x10-6 using a cosine annealing schedule. The nature of 
the Lagrangian optimisation algorithm imposes a cyclical process for updating the Lagrangian multiplier that 
repeats every N epochs. We chose to set N to 300 and found that performing a warm restart of the learning rates 
at the beginning of each new cycle yielded more favourable learning dynamics, and a model with better causal 
structure, compared to training under a simple step decay. We refer the reader to Appendix A for a comprehensive 
list of our hyper-parameter settings. 
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We monitored the training behaviour of the networks using the gradient penalty (GP) and Wasserstein loss terms, 
in addition to the maximum mean discrepancy (MMD) and mean squared error (MSE) between the real and 
synthetic data to measure closeness-of-fit. Figure 2 shows the training and validation loss curves for MRC-GAN. 

 

Figure 2. Learning curves for MRC-GAN. 

2.2.3 Validation  
This is to answer the first question on synthetic data and generative AI models: 
• Can we use generative AI models to generate synthetic data that preserve the same value for research as 

real-world health data? 

Causal graph. The graph illustrated in Figure 3 depicts the learned connections in the adjacency matrix inferred 
from the generator weights. 

 

     
(a)                                                                                      (b)  

Figure 3: Causal graph learned by MRC-GAN, where confounders are shown in grey and green, together with 
drug (blue) and post-measurements (red). (a) All nodes and edges. (b) Subset of edges relevant to LEAD-5. Line 
thickness conveys the magnitude of the connection strength between nodes.  
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The primary goal for MRC-GAN is to learn functions that are able to predict the pre- to post- effect size of each 
drug, while adjusting for all known confounders in the data. This requires that the model learns connections 
between all drugs and post-features, while at the same time, maintaining edges from the age, pre-features, and pre-
treatment into both drug and post-feature nodes. We evaluate the model outputs in both aspects. Namely, we: (a) 
visually examine the learned causal structure graph that underlines the data distribution; and (b) evaluate the 
quality of the data generated from this graph structure. The generator weights selected for study were obtained at 
the end of the 23rd (of 28) Lagrangian iteration (~6000 epochs), based on the best validation loss terms and prior 
to the observed spikes in the learning curves (Fig. 2), in addition to preserving connections between the post-
features. However, we observed no significant difference in the subsequent trial emulation results when using 
weights beyond this point in training. 

From the global view of the entire learned graph in Figure 3a, we can see that this structure has been successfully 
captured by MRC-GAN. Specifically, we observe that all relevant drug to post-feature edges have been preserved 
(blue), with edges from all confounders (grey and green) retained, in addition to connections within the post-
features (red), to adjust for confounding. In Figure 3b, we can draw some initial insights about the effects of each 
drug that are of relevance to the LEAD-5 trial. Most importantly, we observe that stronger edges appear to exist 
between GLP-1 and post-HbA1c than between either basal insulin or placebo and HbA1c. Further, GLP-1 also 
appears to have a stronger connection to post-BMI than both glargine and placebo, but shares a similar connection 
strength to systolic blood pressure. Although the weights of the network depicted in Figure 3 are not commensurate 
with effect size, this nevertheless gives initial evidence that the model has correctly learned to associate the GLP-
1 class of drugs (which include liraglutide) with a similar set of trends as the LEAD-5 clinical trial. We examine 
this hypothesis in more detail in Section 3 using virtual trial emulations.  
Synthetic data generation. To investigate the quality of the data generated by the graph in Figure 3, we sampled 
a cohort of synthetic patients from the model to compare with patients from the real dataset. To generate the 
synthetic patients, we used a random sampling-based approach that assumes the confounders are each 
independently normally distributed according to their respective criteria from the LEAD-5 trial (see Section 3: 
inclusion criteria). This ensures that all patients begin the trial with similar features, and to adjust for any 
confounding effect between the confounders themselves..  Given the randomly sampled confounders, we manually 
set the pre-treatments and drug nodes and generate the post-measurements for our analysis.  

We performed two analyses on the post-measurements generated from MRC-GAN: (a) comparing the statistical 
structure between the real and synthetic features; (b) comparing the regression performance of random forest 
modelling when trained using the real and synthetic features. 

Statistical structure 

We selected real patients from each treatment arm and generated an equivalently sized cohort of synthetic patients 
to compare with. Based on the available training data, this resulted in the generation of 391 patients for the placebo, 
382 for basal insulin, and 482 patients for the GLP-1 treatment arms. We then computed the joint distributions 
between the pre- and post-measurements in both the real and synthetic patients, together with their respective 
marginal distributions using kernel density estimation (KDE). The results are illustrated in Figure 4. 
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A                B 

 
C                D 

 
Figure 4. Statistical comparisons between post-measurements from the real and synthetic data. A. BMI 
(p=0.07868) and Hba1c (p<0.0001). B. UAC (p<0.0001) and EGFR (p=0.07857). C. Creatinine (p<0.0001) and 
Cholesterol (p<0.0001). D. Systolic (p=0.0029) and diastolic (p<0.0001) blood pressure. Significant differences 
are interpreted as p<0.05, which were computed using the Mann-Whitney non-parametric t-test. Trendlines were 
modelled with ordinary least squares (OLS) and are included to study correlations between the post-features.  

Inspecting the marginal distributions above reveals that, overall, the generator learns a PDF for each post-feature 
that has overlapping support with the corresponding true PDF. In particular no significant differences were found 
between the real and synthetic BMI (p=0.07868) and EGFR (p=0.07857) features, although it is clear visually that 
the distributions for systolic blood pressure (Fig. 4D) and cholesterol (Fig. 4C) closely resemble the true 
distributions. However, despite converging around their true median values, we observe poorer results for 
important features such as HbA1c (Fig. 4A) and diastolic blood pressure (Fig. 4D) owing to their smaller sample 
diversity.  
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The datapoints in Figure 4 also expose insights into the correlation structure between the post-features, which is 
useful for understanding whether the model preserves the expected feature dependencies at the output space. From 
the OLS trendlines provided (formulated as 𝑦  =  𝑚𝑥  +  𝑐	), we observe that the relationships between the post-
features have been well-preserved overall, especially for HbA1c and BMI (real: m=0.127, c=65,7, 𝑅c=0.001, fake: 
m=0.247, c=54.9, 𝑅c=0.04), and cholesterol and creatine (real: m=-0.003, c=4.57, 𝑅c=0.01; fake: m=-0.003, 
c=4.71, 𝑅c=0.03). 

Machine learning regression analysis   

Lastly, we perform regression analysis on both the real and synthetic data to evaluate the efficacy of the generated 
post-features for predicting clinical outcomes. We implemented random forest (RF) regression to predict clinical 
outcomes related to the LEAD-5 trial, given the remaining post-measurements. We trained separate RF models on 
the real and synthetic datasets, and then assigned a separate hold-out set of real data for evaluating the performance 
of both trained RF models. This enabled us to compare the ability of both RF models to make predictions given 
the same test data. For each RF, we used 1000 decision trees with a max depth (number of splits) of 5 per decision 
tree. 
Regression performance. We quantify the performance of both real and synthetic RF models using the mean 
squared error (MSE) and 𝑅c metrics, which were computed between the ground truth (𝑦z) and predicted targets 
from the real (𝑦z{ ) and synthetic (𝑦|}) RF model. The results are provided in Table 2.    
Overall, we observe that the synthetic RF model yields similar predictive accuracy to the real RF model when 
asked to predict HbA1c and BMI, based on their corresponding MSE and 𝑅cvalues. However, in the case of both 
systolic and diastolic blood pressure, we observe that the targets show little to no correlation with the fake 
predictions, indicating that the fake RF struggles to model the dependencies to the blood pressure. Since we expect 
the confounding variables (i.e., age and pre-features) to contain additional predictive information, we provide 
results in Appendix B to show the effects of including these features on the real and fake RF performance, and 
whether the fake RF model captures the relationships between pre- and post-features.  
Table 2: Regression performance of the real and synthetic RF models on a test set of real post-measurement data. 
Outcomes align with those studied in the LEAD-5 trial. HbA1c: blood glucose [mmol/mol]. SBP: systolic blood 
pressure [mmHg]. DBP: diastolic blood pressure [mmHg]. BMI: body mass index [kg/m2].  

 HbA1c SBP DBP BMI 
 𝑅c MSE 𝑅c MSE 𝑅c MSE 𝑅c MSE 
Real 0.057 411.27 0.273 169.41 0.298 56.51 0.036 22.02 
Synthetic -0.052 459.26 -0.039 242.37 -0.248 100.58 -0.078 24.65 

Feature importance. In this section, we examine the importance of the test set features used by both RF models 
to discern whether the fake RF model makes use of clinically sensible features in its predictions. Assuming the 
features used by the real RF model are the ground truth, we interrogate the fake RF model by permuting each test 
feature independently, re-computing the outcome, and observing changes in the 𝑅c value. The output from this 
process has an intuitive interpretation: features with more importance cause the predictions to be more correlated 
with the targets, meaning that a decrease to 𝑅c corresponds to greater feature importance and vice versa. From the 
results in Figure 5, we can observe that, although the features are not precisely matched, the synthetic RF model 
generally uses similar clinical features to the real model across all outcome predictions. 
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D 

 
Figure 5. Ranking the most important features (descending order) used by the random forest models, trained on 
real (left) and synthetic (right) post-measurement data, for predicting the LEAD-5 outcomes: A. HbA1c. B. 
Systolic blood pressure. C. Diastolic blood pressure. D. BMI. Boxplots summarise the change in model 
performance over 10 random and independent permutations to each feature. The dashed line illustrates whether 
removing the feature is likely to worsen performance (right-hand side) or improve performance (left-hand side), 
indicating that the feature is more or less important for predictions, respectively. Results when confounding 
features are included are available in Appendix B. 

 

2.3. Summary and limitations 

In our implementation, we constrained the model to only generate post-measurements (e.g., post-hba1c), and found 
that, overall, the learned causal graph (Fig. 3) produces synthetic data that contains similar statistical structure 
(Fig. 4) and predictive information (Tab. 2 and Fig. 5) to that of the real data. However, we identified two key 
limitations to our analysis. First, we sampled synthetic patients from the model using a simplistic random-based 
approach that assumes no confounding between the pre-measurements. However, this will be an important factor 
for synthetic data generation since we expect there are such confounding effects in the real patients. A more 
complete and principled generation approach would be to instead learn the causal structure amongst the pre-
features first, and to then generate them on this basis before producing the post-measurements. Second, the training 
dataset was limited to a sample size of around 7000 due to a large proportion of missing data. This led to the drug 
classes of interest (i.e., placebo, basal insulin, and GLP-1) being under-represented, with only 382, 391, and 482 
samples in each, respectively, compared to others (e.g., metformin with c. 1500 samples). Contemporary deep 
learning typically depends upon datasets of an order magnitude greater than this, together with balanced classes, 
meaning that with our current experimental setup we limits the amount of causal structure for the model to learn 
from. To add to this issue, many of the remaining patients in our primary drug classes received additional drugs 
within a short period of time (~few weeks from beginning of treatment), meaning the true drug effects in such 
patients could be confounded.  
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3. Trial Emulation  

To evaluate the outcomes of the trial emulations, we have made comparison of the outcomes from the virtual trial 
emulations against an existing trial (Section 3.1 and Section 3.2), and also conducted extended counterfactual 
emulations to predict the effect sizes on real patient data (Section 3.3) 

3.1 LEAD-5 Emulation 
The experiment with trial emulations is to answer the second research question: 

• “Can we perform virtual clinical trial emulations by discovering correct causal relations from the synthetic 
data?” 

This experiment is performed as confirmatory study in a specific Type 2 diabetes mellites (T2DM) use case. We 
have emulated an established clinical trial, namely, LEAD-5 (Liraglutide Effect and Action in Diabetes), and 
compared the emulation outcomes against the published LEAD-5 outcomes to check whether the “virtual” 
outcomes are similar to the “true” outcomes. The LEAD-5 trial measures the effect of Liraglutide, a GLP-1 
receptor agonist. More details about the LEAD-5 trial can be found in the following Abstract extracted from [2] :  

Liraglutide vs insulin glargine and placebo in combination with metformin and sulfonylurea therapy in type 2 
diabetes mellitus (LEAD-5 met+SU): a randomised controlled trial  

Aims/hypothesis The aim of the study was to compare the efficacy and safety of liraglutide in type 2 diabetes 
mellitus vs placebo and insulin glargine (A21Gly,B31Arg,B32Arg human insulin), all in combination with 
metformin and glimepiride.  

Methods This randomised (using a telephone or web-based randomisation system), parallel-group, controlled 26 
week trial of 581 patients with type 2 diabetes mellitus on prior monotherapy (HbA1c 7.5–10%) and combination 
therapy (7.0–10%) was conducted in 107 centres in 17 countries. The primary endpoint was HbA1c. Patients were 
randomised (2:1:2) to liraglutide 1.8 mg once daily (n = 232), liraglutide placebo (n = 115) and open-label insulin 
glargine (n = 234), all in combination with metformin (1 g twice daily) and glimepiride (4 mg once daily). 
Investigators, participants and study monitors were blinded to the treatment status of the liraglutide and placebo 
groups at all times.  

Results The number of patients analysed as intention to treat were: liraglutide n=230, placebo n=114, insulin 
glargine n= 232. Liraglutide reduced HbA1c significantly vs glargine (1.33% vs 1.09%; −0.24% difference, 95% 
CI 0.08, 0.39; p= 0.0015) and placebo (−1.09% difference, 95% CI 0.90, 1.28; p < 0.0001). There was greater 
weight loss with liraglutide vs placebo (treatment difference –1.39 kg, 95% CI 2.10, 0.69; p = 0.0001), and vs 
glargine (treatment difference −3.43 kg, 95% CI 4.00, 2.86; p < 0.0001). Liraglutide reduced systolic BP (−4.0 
mmHg) vs glargine (+0.5 mmHg; −4.5 mmHg difference, 95% CI 6.8, −2.2; p = 0.0001) but not vs placebo (p = 
0.0791). Rates of hypoglycaemic episodes (major, minor and symptoms only, respectively) were 0.06, 1.2 and 1.0 
events/patient/year, respectively, in the liraglutide group (vs 0, 1.3, 1.8 and 0, 1.0, 0.5 with glargine and placebo, 
respectively). A slightly higher number of adverse events (including nausea at 14%) were reported with liraglutide, 
but only 9.8% of participants in the group receiving liraglutide developed anti-liraglutide antibodies. 
Conclusions/interpretation Liraglutide added to metformin and sulfonylurea produced significant improvement in 
glycaemic control and bodyweight compared with placebo and insulin glargine. The difference vs insulin glargine 
in HbA1c was within the predefined non-inferiority margin.  

Inclusion criteria According to the patient baseline characteristics in LEAD-5[2], the inclusion criteria of the 
virtual trial emulations are set based on the normal distribution of the demographic variable and pre-treatment 
clinical measurements as follows: 
Age [57.6, 9.5]; BMI [30.4, 5.3]; Cholesterol [4.47, 1.17]; Creatine [84.02, 31.45]; Diastolic blood pressure [80.8, 
9.1]; Systolic blood pressure [135, 15]; HbA1c [67.2, 7.5]; UAC [2.2, 1.1, lower=1.1, upper = 5.7]; EGFR [59.5, 
1.0, lower=59.5, upper=60].  
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Two numbers in the brackets stand for the mean and standard deviation of the normal distributions of the variables. 
Note UAC and EGFR receive truncated normal distributions with lower and upper bounds specified above.  
Effect size and drug comparisons The effect of the drugs (GLP-1, basal insulin and placebo) are measured 
specifically with clinical measurements including HbA1c, systolic blood pressure and body mass index (BMI). For 
each drug, we compare the difference between the pre-treatment and post-treatment measurements. The trials 
involve three virtual patient groups, including the GLP-1 group, insulin group and placebo group. The effect size 
between different drugs are compared with the difference-in-differences method [8].  
Emulation Each trial group contains N = 232 patients, who are sampled from the normal distribution of the 
confounding variables according to the inclusion criteria and they are randomly assigned to one of the three groups.  
Thus, each virtual individual patient is given either GLP-1, basal insulin or placebo according to its group. In 
addition, all the patients have a history of using metformin and sulfonylurea in previous treatments. As the 
demographics and pre-treatment measurements are randomly sampled according to the inclusion criteria and the 
treatments are randomly assigned, all the virtual patients have very similar conditions before the treatments and 
their treatment decisions (i.e., use of the drugs) are not confounded. This prevents bias in the estimation of the 
drug effect and enables meaningful comparisons between the drugs. 

Once the confounding and drug variables are assigned, the model calculates the post-treatment measurements of 
the virtual patients, yielding full records of the virtual patients in each group. This computation is stochastic since 
our model is generative involving the sample of noise variable 𝒁. This allows us to make comparisons of the 
treatment effects of GLP-1, basal insulin and placebo. To guarantee repeatability, we conduct the above trials 
multiple M = 60 times, and the trial results are computed as the mean and standard deviations of the multiple trials 
– see Table 3-1 below.  
Trial outcomes Table 3-1 shows the average treatment effect (from M=60 trials) of each of the three drugs 
estimated based on the difference between pre- and post-treatment measurements. 

Table 3-1 LEAD-5 emulation results:  
Average treatment effect measured by differences between pre- and post-treatment measurements  

 HbA1c [mmol/mol] Systolic Blood Pressure[mmHg] BMI [kg/m2] 
 Mean Std Mean Std Mean Std 
GLP-1 -5.68 0.36 -4.31 0.57 0.68 0.07 
Basal insulin -4.43 0.53 -2.04 0.51 1.46 0.09 
Placebo -3.09 0.41 -1.87 0.50 1.28 0.09 

Figure 6 present visualization of the treatment effects of the three drugs (colour coded). Each visualization shows 
the pre-treatment measurements in x-axis versus post-treatment measurements in y-axis, together with regression 
lines to indicate the overall trends in the relationships. We have indicated the range of the measurements with box 
plot.  

Table 3-2 shows pairwise comparisons of the drugs on HbA1c, systolic blood pressure and BMI, which is 
calculated with the difference-in-differences method [8].  

The figures in Table 3-1, Table 3-2 and Figure 6 show that all of the three drug groups have similar pre-treatment 
measurement and GLP-1 produces the largest reduction of the clinical measurements after treatments among the 
three drugs; Basal insulin performs the second best in HbA1c and systolic blood pressure measurements; Placebo 
is the second best according to the BMI measurements. This is in a good agreement with the LEAD-5 outcomes, 
which suggested the same drug ranking in terms of the HbA1c and BMI measurements. In the systolic blood 
pressure measurements, LEAD-5 also suggested more reduction from GLP-1 than basal insulin. However, there 
should be no significant difference between GLP-1 and placebo, which contradicted to our experiments in this 
aspect.  
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Table 3-2 LEAD-5 emulation results:  
Pairwise comparisons of treatment effect with difference-in-differences  

 HbA1c [mmol/mol] Systolic Blood Pressure 
[mmHg] 

BMI [kg/m2] 

 Expected 95% 
Conf Int 

P-value Expected 95% 
Conf  

P-value Expected 95% 
Conf 

P-value 

GLP-1 
vs 
placebo  

-2.58 
-2.78, 
-2.37 

<0.001 -2.38 
-2.73, 
-2.03 

<0.001 -0.61 
-0.77,  
-0.45 

0.001 

GLP-1 
vs 
Insulin  

-1.21 
-1.42,  
-1.0 

<0.001 -2.99 
-2.62,  
-1.89 

<0.001 -0.79 
-9.96,  
-0.63 

0.001 

    

     
Figure 6 Outcomes of the virtual trial emulations: The performance difference between GLP-1, basal insulin and 
placebo in HbA1c, systolic blood pressure and BMI measurements. Each drug is visualized by pre-treatment HbA1c 
(x-axis) vs post-treatment HbA1c (y-axis) and is colour coded. We compare the performance of these three drugs 
in each diagram. (a) Top row: overall performance comparison of M=60 trials between the three drugs on, from 
left to right, HbA1c systolic blood pressure and BMI measurements; (b) Bottom row: Comparisons between the 
three drugs in three randomly selected trials from M=60 trials on, from left to right, HbA1c systolic blood pressure 
and BMI measurements. 

These results of the emulation show that:  
• GLP-1 is the best according to the measurements in HbA1c, systolic blood pressure and BMI reduction in 

comparison with basal insulin and placebo. Through pairwise comparisons with difference-in-differences, 
the HbA1c reduction by GLP-1 vs placebo is  -2.58, 95% CI[-2.78, -2.37 ] p< 0.001 ; by GLP-1vs basal insulin 
is -1.21, 95% CI[ -1.42, -1.0] p< 0.001. This is generally in a good agreement with the LEAD-5 outcomes, 
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i.e., “Liraglutide reduced HbA1c significantly vs glargine (1.33% vs 1.09%; −0.24% difference, 95% CI 
[0.08, 0.39]; p= 0.0015); Liraglutide reduced HbA1c significantly vs placebo (−1.09% difference, 95% CI 
[0.90, 1.28]; p < 0.0001)”. 

• GLP-1 also shows similar significance in the reduction of systolic pressure and BMI in the virtual trial 
emulations. The agreement with the outcomes from LEAD-5 is mixed in this aspect, as LEAD-5 reported “ 
weight loss with liraglutide vs glargine (treatment difference −3.43 kg, 95% CI [4.00, 2.86]; p < 0.0001; 
weight loss with liraglutide vs placebo (treatment difference –1.39 kg, 95% CI [2.10, 0.69]; p = 0.0001;  
Liraglutide reduced systolic BP (−4.0 mmHg) vs glargine (+0.5 mmHg); −4.5 mmHg difference, 95% CI 
[6.8, −2.2]; p = 0.0001); but not Liraglutide vs placebo (p = 0.0791)”. The ranking of the three drugs on the 
BMI measurement agrees with LEAD-5. The discrepancy lies within the systolic blood pressure 
measurement. Our simulations suggest GLP-1 vs placebo reduction -2.38, 95% CI[-2.72,-2.03], p<0.001 and 
GLP-1vs basal insulin reduction -2.99, 95% CI[-2.62, -1.89], p<0.001. However, LEAD-5 only reported 
reduction significance between GLP-1vs basal insulin.  

3.2 LEAD-5 counterfactual emulations 
This experiment is conducted as a complement to the trial emulation described in Section 3.1. The trial emulation 
in Section 3.1 has emulated a real trial scenario in which patients who meet the inclusion criteria are recruited and 
randomly assigned to a drug-group (either GLP-1, basal insulin or placebo). Thus in that case we have three groups 
with different patient cohorts (but with similar conditions in demographics, pre-treatment measures and pre-
treatment medical history to allow meaningful comparisons between them for the effect of the drugs). In contrast, 
the counterfactual trial emulations allow us to examine the clinical questions about the drug effects in a 
counterfactual scenario by computing the post-treatment measures as the effects of a set of hypothetical treatment 
with different drugs. This allows us to answer clinical questions such as “What would be the clinical outcomes if 
the patient had been given a different treatment?”. The experiment still follows the same inclusion criteria as 
LEAD-5 (with the same normal distribution). All the other settings, including the group size (N=232) also remain 
the same. The only difference here is that instead of creating three groups of virtual patients with very similar 
conditions, we only use one patient group but giving them three different drugs (GLP-1, basal insulin or placebo) 
in each trial, hence measure difference drug effects of the same patients.  
Table 4-1 shows the average treatment effect (from the M=60 trials) of each of the three drugs estimated with the 
counterfactual emulations. 

Table 4-1 Counterfactual emulation results: 
Average treatment effect measured by differences between pre- and post-treatment measurements. 

 HbA1c [mmol/mol] Systolic Blood 
Pressure[mmHg] 

BMI [kg/m2] 

 Mean Std Mean Std Mean Std 
GLP1 -5.72 0.40 -4.21 0.49 0.65 0.09 
Basal insulin -4.48 0.48 -2.14 0.50 1.45 0.09 
Placebo -3.06 -0.44 -1.96 0.49 1.27 0.09 

Table 4-2 shows pairwise difference-in-differences of the drug effects from the counterfactual emulations.  
Table 4-2 Counterfactual emulation results:   

Pairwise comparisons of treatment effect with difference-in-differences 
 HbA1c [mmol/mol] Systolic Blood 

Pressure[mmHg] 
BMI [kg/m2] 

 Expected Conf Int P-value Expected Conf  P-value Expected Conf  P-value 
GLP1 
vs 
placebo  

-2.65 
-2.85, 
-2.45 

<0.001 -2.25 
-2.65, 
-1.85 

<0.001 -0.61 
-0.77, 
-0.46 

<0.001 
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GLP1 
vs 
insulin  

-1.24 
-1.44, 
-1.03 

<0.001 -2.07 
-2.47, 
-1.66 

<0.001 -0.80 
-0.96, 
-0.64 

<0.001 

In fact, the counterfactual emulations of LEAD-5 provide very similar results to the emulations presented in the 
Section 3.1. As reported in Table 4-1 and Table 4-2, GLP-1 is the best performed drug as it shows significant 
reduction in HbA1c, systolic blood pressure and BMI in comparison with both placebo and basal insulin. This 
again has reproduced the ranking of the three drugs in LEAD-5, except the discrepancy on systolic blood pressure.  

Counterfactual emulation is one of the main advantages that we have in our emulation approach, which is based 
on the learning of the structural equations in the causal model. With the counterfactual ability, we can view 
consequences of treating the same patient under multiple clinical scenarios to support clinical decision making. 
We do not need to match individual patients between different groups as conventionally required in the 
observational studies. The next section further extends the counterfactual emulation to the data from real patients.  
3.3 Extended counterfactual emulation on real patients 
In this experiment, we demonstrate the use of trial emulation to seek answers to “counterfactual” clinical questions 
in clinical practice. Specifically, we emulate hypothetical and counterfactual treatments where different drugs are 
applied to the same real patients. These virtual trial emulations are designed to find out how different the clinical 
outcomes would be if the patients had taken different treatment pathways. In our experiments we have identified 
patients in the SCI diabetes dataset according to the drugs they took in their treatments. The patients have been 
placed in three groups according to the drugs they have had, namely GLP-1, basal insulin and placebo. Then for 
each patient, the virtual trial emulation administers three drugs, one is the real drug that the patient took in reality, 
and the other two drugs are counterfactual. The emulations then calculate the average treatment effect in each drug 
group, and we have also estimated pairwise difference-in-differences in each drug group, namely GLP-1 vs 
placebo and GLP-1 vs basal insulin. The results of the counterfactual simulations are presented in Table 5-
1(average treatment effect) and Table 5-2 (pairwise difference-in-differences) below.  

Table 5-1a Counterfactual emulation on GLP-1 drug group:  
Average treatment effect measured by differences between pre- and post-treatment measurements. 

 HbA1c [mmol/mol] Systolic Blood 
Pressure[mmHg] 

BMI [kg/m2] 

 Mean Std Mean Std Mean Std 
GLP-1 -13.26 0.53 -2.88 0.45 0.34 0.06 
Basal insulin -13.90 0.61 -0.16 0.46 1.14 0.06 
Placebo -12.93 -0.59 -0.43 0.47 1.00 0.06 
Real GLP-1 -10.61 0.95 -2.47 0.79 -1.07 0.10 

Table 5-2a Counterfactual emulation on GLP-1 drug group:   
Pairwise comparisons of treatment effect with difference-in-differences 

 HbA1c [mmol/mol] Systolic Blood 
Pressure[mmHg] 

BMI [kg/m2] 

 Expected Conf Int P-value Expected Conf  P-value Expected Conf  P-value 
GLP-1 
vs 
placebo  

-0.32 
-0.62, 
-0.02 

0.03 -2.44 
-2.72, 
-2.17 

<0.001 -0.66 
-0.76, 
-0.55 

<0.001 

GLP-1 
vs 
insulin  

0.64 
0.34, 
0.94 

<0.001 -2.72 
-2.99, 
-2.44 

<0.001 -0.80 
-0.90,  
-0.70 

<0.001 

Table 5-1a and Table 5-2a are the results for the GLP-1 group. This is the group in which the patients took GLP-
1 in reality. We add another row in Table 3-1a to show the average treatment effects of GLP-1 calculated using 
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the real patient data, and we highlight the counterfactual and real results that are comparable.  We can see that the 
emulations have produced the right direction (i.e., positive vs negative) for the treatment effect except on the BMI 
results. On HbA1c performance, the ranking is basal insulin>GLP-1>placebo, which does not agree with LEAD-
5, however, the pre-treatment HbA1c in this group are outside the range of LEAD-5 inclusion criteria. On systolic 
blood pressure, GLP-1>placebo>basal insulin, which partially agrees with LEAD-5 (i.e. GLP-1=placebo>basal 
insulin) except on placebo,  note the pre-treatment systolic blood pressure within this group is within the LEAD-
5 inclusion range. On BMI, GLP-1>placebo>basal insulin, which agrees well with LEAD-5, and the pre-treatment 
measurement on BMI are also within the LEAD-5 inclusion range.  

Table 5-1b Counterfactual emulation on basial insulin drug group:  
Average treatment effect measured by differences between pre- and post-treatment measurements. 

 HbA1c [mmol/mol] Systolic Blood 
Pressure[mmHg] 

BMI [kg/m2] 

 Mean Std Mean Std Mean Std 
GLP-1 -17.23 0.47 -2.22 0.41 0.97 0.04 
Basal insulin -18.33 0.51 0.78 0.43 1.81 0.05 
Placebo -17.33 0.45 0.42 0.41 1.62 0.05 
Real insulin -13.21 0.75 0.66 0.74 0.59 0.09 

Table 5-2b Counterfactual emulation on basal insulin drug group:   
Pairwise comparisons of treatment effect with difference-in-differences 

 HbA1c [mmol/mol] Systolic Blood 
Pressure[mmHg] 

BMI [kg/m2] 

 Expected Conf Int P-value Expected Conf  P-value Expected Conf  P-value 
GLP-1 
vs 
placebo  

0.1 
-0.17, 
0.37 

0.472 -2.64 
-2.94, 
-2.34 

<0.001 -0.65 
-0.74, 
-0.56 

<0.001 

GLP-1 
vs 
insulin  

1.1 
0.83, 
1.36 

<0.001 -3.00 
-3.3, 
-2.7 

<0.001 -0.833 
-0.93, 
-0.74 

<0.001 

Table 5-1b and Table 5-2b are the results for the basal insulin group. This is the group in which the patients took 
basal insulin in reality. We add another row in Table 3-1b to show the average treatment effects of basal insulin 
calculated using the real patient data, and we highlight the counterfactual and real results that are comparable.  We 
can see that the emulations have produced the right direction (i.e., positive vs negative) for the treatment effect. 
On HbA1c performance, the ranking is basal insulin>GLP-1>placebo, which does not agree with LEAD-5, 
however, the pre-treatment HbA1c in this group are outside the range of LEAD-5 inclusion criteria. On systolic 
blood pressure, GLP-1>placebo>basal insulin, which partially agrees with LEAD-5 (i.e. GLP-1=placebo>basal 
insulin) except on placebo,  note the pre-treatment systolic blood pressure within this group is within the LEAD-
5 inclusion range. On BMI, GLP-1>placebo>basal insulin, which agrees well with LEAD-5, and the pre-treatment 
measurement on BMI are also within the LEAD-5 inclusion range.  

Table 5-1c Counterfactual emulation on placebo drug group:  
Average treatment effect measured by differences between pre- and post-treatment measurements. 

 HbA1c [mmol/mol] Systolic Blood 
Pressure[mmHg] 

BMI [kg/m2] 

 Mean Std Mean Std Mean Std 
GLP-1 -5.24 0.37 -3.84 0.36 0.61 0.04 
Basal insulin -2.57 0.47 -0.98 0.37 1.42 0.05 
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Placebo -1.99 0.42 -1.62 0.36 1.24 0.04 
Real placebo -0.83 0.71 -0.99 0.62 -0.26 0.08 

Table 5-2c Counterfactual emulation on placebo drug group::   
Pairwise comparisons of treatment effect with difference-in-differences 

 HbA1c [mmol/mol] Systolic Blood 
Pressure[mmHg] 

BMI [kg/m2] 

 Expected Conf Int P-value Expected Conf  P-value Expected Conf  P-value 
GLP-1 
vs 
placebo  

-3.25 
-3.5, 
-3 

<0.001 -2.22 
-2.48, 
-1.96 

<0.001 -0.64 
-0.76, 
-0.53 

<0.001 

GLP-1 
vs 
insulin  

-2.67 
-2.92,  
-2.42 

<0.001 -2.86 
-3.12, 
-2.59 

<0.001 -0.82 
-0.93, 
-0.70 

<0.001 

Table 5-1c and Table 5-2c are the results for the placebo group. This is the group in which the patients took placebo 
in reality. We add another row in Table 3-1c to show the average treatment effects of placebo calculated using the 
real patient data, and we highlight the counterfactual and real results that are comparable.  We can see that the 
emulations have produced the right direction (i.e. positive vs negative) for the treatment effect except on BMI. On 
HbA1c performance, the ranking is GLP-1>basal insulin >placebo, which agrees with LEAD-5, and the pre-
treatment HbA1c in this group are within the range of LEAD-5 inclusion criteria. On systolic blood pressure, GLP-
1>placebo>basal insulin,  which partially agrees with LEAD-5 (i.e. GLP-1=placebo>basal insulin) except on 
placebo,  note the pre-treatment systolic blood pressure in this group is within the LEAD-5 inclusion range. On 
BMI, GLP-1>placebo>basal insulin,  which agrees well with LEAD-5, and the pre-treatment measurement on 
BMI are also within the LEAD-5 inclusion range.  
Figure 7 visualise the results of the counterfactual emulations on the three groups. 
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Figure 7 Visualisation of the counterfactual emulation results of the GLP-1, basal insulin and placebo groups. (a) 
Top row: GLP-1 group results measured by (from left to right) HbA1c, systolic blood pressure and BMI; (b) Middle 
row: basal insulin group results measured by (from left to right) HbA1c, systolic blood pressure and BMI; 
(c)Bottom row: placebo group results measured by (from left to right) HbA1c, systolic blood pressure and BMI; 

The results of the counterfactual emulations on real patients in Table 5-1, Table 5-2 show that GLP-1 remains as 
the drug with best 
performance over the placebo 
group of real patients. In fact, 
this result agrees well with 
LEAD-5 in terms of the 
ranking of the three drugs on 
HbA1c and BMI 
measurements. Our analysis 
shows that patients in the 
placebo group are very close 
to the LEAD-5 patient 
baseline characteristics in 
terms of the HbA1c 

measurements. However, the 
results of the counterfactual 
emulations on the other two 
groups are very different.  The 
ranking of the three drugs are 
different from the LEAD-5 
results. Our analysis shows 
that patients in these two 
groups are very different from 
the LEAD-5 patient baseline 
characteristics – for example, 
their pre-treatment 
measurements on HbA1c are 
not within the range of the 
LEAD-5 criteria. 
Remarkably, according to the 
emulations, GLP-1 is not the 
best drug for the GLP-1 group 
patients, instead, basal insulin 
appear to be the right 
medicine for the patients in 

 

 

Figure 8 Comparisons of difference-in-differences results from three pairs of 
drugs in two trial emulations on real patient data. (a) Top row: patient data are 
sampled according to the mean and standard deviation of the real dataset; (b) 
Bottom row: patient data sampled from the real dataset with narrowed (0.5x) 
standard deviation. 
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the basal insulin group. Another observation towards the emulations vs the real data is that the emulations often 
slightly over-predict the average treatment outcomes on all of the three drugs.  

Further experiments on trial emulations with the real patient data (SCI diabetes) suggest that the LEAD-5 results 
cannot be simply extrapolated to cover patients outside its baseline characteristics. When we directly apply the 
drugs to the patients that are randomly sampled from the datasets, the treatment outcomes of GLP-1 are not aligned 
with the results in LEAD-5, which suggests that GLP-1 is probably not the most suitable drug to all patients. 
However, if we sample from the dataset with a much narrowed (0.5x) standard deviation, the GLP-1 performance 
become much more aligned with LEAD-5 – see Figure 8. Our analysis shows that the narrowed data distribution 
is much closer to the LEAD-5 patient baseline characteristics.  

4. Analysis and conclusion  
We have mainly conducted two types of experiments on the virtual trial emulations in the context of T2DM 
treatment with three different drugs. The first type of experiments is focused on the replication of the existing 
LEAD-5 trial, and the second type of experiments attempts to emulate counterfactual scenarios where different 
drugs are applied to the same patients to support clinical decision making. The effect sizes are estimated with both 
average treatment effects (i.e., difference between pre-and post-treatment measurements) and difference-in-
differences between pairwise drugs. When the patients meet the LEAD-5 patient baseline characteristics, the trial 
emulations produce the same ranking between the three drugs as LEAD-5. Our experiments are conducted based 
on independent sampling of virtual patients for the three treatment groups, counterfactual emulations on the same 
group of virtual patients, and counterfactual emulations on the real patients. All the results have suggested that 
GLP-1 has the best performance in terms of HbA1c, systolic blood pressure and BMI reduction if the patients meet 
the inclusion criteria of LEAD-5. However, the experiments with real patients who do not fall into the baseline 
characteristics of LEAD-5 have presented different performance rankings between the drugs. This suggests that 
LEAD-5 trial outcomes cannot be simply extrapolated to cover other patient populations. To this end, the virtual 
trial emulation models and tools are potentially very useful in terms of providing evidence to support the 
extrapolation of clinical trials for real-world clinical practice. 

Overall, the trial emulations have replicated LEAD-5 very well on the HbA1c and BMI measurements, which are 
the most important clinical measures in T2DM. GLP-1 vs basal insulin on systolic blood pressure also well agrees 
with LEAD-5. There is a discrepancy on the effect of GLP-1 vs placebo on systolic blood pressure, where LEAD-
5 shows no significance while our emulation still predicts significant reduction. In addition, our experiments with 
the trial emulations on real patients have compared the results with the real data (where the results are comparable). 
Most of the emulation have produced the right direction for the effect. However, we have also noticed over 
estimation in some of the cases.  

We recon the difference between the real trial and the emulations potentially comes from the following sources:   
• The data presents the drug as GLP-1 , which is more general than the specific drug (i.e. Liraglutide) tested in 

LEAD-5. Hence the training of the emulation model and the testing with the trial emulations have addressed 
aggregated/mean effect of several GLP-1 drugs as a drug category. Also, both basal insulin and placebo are 
involved as drug categories in the emulations, which are not identical to the corresponding drugs involved in 
the original trials in LEAD-5. 

• Although the trial emulations have tried to create the LEAD-5 trial populations by sampling from the normal 
distributions of the LEAD-5 patient baseline characteristics, it is not possible to replicate a completely 
identical cohort due to different settings between the trial and the real-world clinical practice. For example, 
several variables involved in the virtual trial emulation are not identical to the variables that are used in the 
LEAD-5 patient baseline characteristics, for example, we have only used age to describe the patient 
demographics; several clinical measurements such as blood pressures are based on yearly mean 
measurements, and so on and so forth.  Another limitation within the real-world dataset is the pre-treatment 
history of the patients might not be complete.  

• Other difference in the settings between LEAD-5 and the real-world clinical practice may have also 
contributed to the discrepancy between the emulations and real trial results. Hidden confounders can be 
responsible for generating bias in the emulations. The current model does not take these into considerations.  
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• Practical errors in the technologies (e.g., training and computational errors) may also contribute to the 
difference at certain degrees.  

Limitations: Due to time constraint, this study has its limitations in a number of aspects in both the technology 
and clinical dimensions. These include:  
• As a proof-of-concept study, it only has replicated a single clinical trial in T2DM (i.e.LEAD-5). To further 

validate the concept, more evidences are needed from further studies on a wider range of clinical trials.   
• The study has evaluated the emulation with a real trial that we already know the outcomes. For the future use 

of the trial emulations to address real-world clinical questions where the ground truth is unknown, we need 
standardised quality metrics to calibrate the emulation outcomes.   

• The current model has made several assumptions about the causal structures with in the data in order to 
recover them. These include (a) the model identifiably assumption, where we assume the data was generated 
from a model in additive noise form. This is quite a big assumption as the model underlying the real world 
data may be different. The true model might not be in an identifiable form, in which case we cannot 
completely identify the causal structure from the data. Our current work has not taken into account the 
uncertainty from unidentifiable models; (b) the causal sufficiency assumption, where we assume there is no 
unobserved confounders. This is not realistic as real-world measurement is always limited and there is a 
possibility of influence from unobserved variables.  

• We have made several simplifications in data pre-processing. For example, only age variable is used to 
represent the patient demographics; the pre-treatment and post-treatment measurements are taken as yearly 
average/median values – all these might have contributed to errors in the study. Also, we have simply dropped 
all the missing data in the training.  

• The differential privacy framework has not worked compatibly with the causality learning framework in the 
current model. Although we have used similarity metrics to show that each synthetic patient is different from 
the real patients in the training data, further investigation is worthwhile to explore the differential privacy 
framework further. One potential solution is to involve a recent model in differentiable DAG sampling[10], 
where we can offer more protection to the training data from the data generative process.  
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Appendix 
We provide supplementary material to support the discussions in the main text: Section A includes the list of 
hyper-parameters; Section B includes additional results.  

A. Hyper-parameters 

Table A: List of model and optimisation hyper-parameters. Note: the (+1) in the generator network indicates the 
concatenation of the 371dim activation vector with the 1-dim latent noise variable (z), which is mapped to a 1-dim 
output feature. This is repeated for each of the 37 synthetic variables (hence x37). 

Hyper-parameter  Architecture 
 Generator Discriminator 
Learning rate 3e-4 3e-4 
Batch size  
First moment (𝜷𝟏) 
Second moment (𝜷𝟐) 
Dropout (all layers) 
Weight decay 
PAC  
𝒄𝑨: Coefficient for 
absolute value of h(A) 
𝝀𝑨: DAG constraint for 
h(A)  
Latent dim (z) 
Network structure (MLP) 
 
 
Updates per mini batch 
Epochs 

200 
0.9 
0.999 
0.0 
1e-6 
n/a 
 
1.0 
 
0.0 
 
1 
FC1: 37-1369 
FC2: 37(+1) -1 (x37) 
 
1 
300 

200 
0.5 
0.9 
0.5 
1e-6 
10 
 
n/a 
 
n/a 
 
n/a 
370-256-256-10 
 
 
1 
300 

 

 

Learning rate scheduler. We also scheduled learning rate decay using cosine annealing with warm restarts, which 
decayed from LR=3e-4 to 7e-6 over 300 epochs and performed restarts at the end of this period. 

B. Additional results  
This section is structured as follows: section B.1 performs a sensitivity analysis on the pre-measurements, where 
we fix all features and perturb each one in turn to observe the change in the post-measurements; section B.2 
contains the results to the model when we turn the edges into pre-features back on; section B.3 includes the 
confounding features in the regression task, to supplement the random forest results in the main text; section B.4 
contains the results when we use differential privacy with the No-Tears model.  

B.1. Sensitivity analysis of the pre-measurements  

The ability of MRC-GAN to perform simulations on the learned causal structure allows us to ask counterfactual 
questions, such as: ‘What would a real patient’s outcome most likely be if they were given a different drug?’, which 
we explored in the main text (Sec. 3.2).  

In this section, we pursue a different but related question: ‘Given a patient on a particular drug, how do their post-
features change when we permute their pre-measurements?’. This is to study the extent to which the model 
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accounts for changes in the confounders under the same trial conditions. For example: ‘If the patient with a 
particular set of pre-features were 20 years older, how effective would each of the drugs be?’, or: ‘If the patient’s 
blood pressure was initially much higher, how effective would the drug be?’. Since we do not have the ground 
truth information for such cases, we rely upon the opinions of our clinical experts. 

Experimental setup. We selected two real patients from the training dataset, and for each patient, we fixed all 
input pre-measurements and predicted their post-measurements with MRC-GAN in response to variations in their 
age. We then repeated this process for each pre-measurement, holding the remaining inputs fixed at their baseline 
values (Table B.1) and for each of the LEAD-5 drug classes: placebo, basal insulin. GLP-1. This enabled us to 
study how the effectiveness of each drug changes as we vary our patient’s clinical data, and by extension, which 
drug is preferable under different conditions. 

Table B.1: Baseline characteristics of two patients randomly selected from the SCI dataset for the sensitivity 
analysis. Clinical features are the pre-measurements (i.e., collected before treatment). 

Patient  Age BMI Cholester
ol  

Creatini
ne  

DBP SBP UAC HbA1c EGFR 

1 61.40 31.92 4.6 58.0 77.0 135.
0 

13.2 63.0 60.0 

2 75.16 28.86 3.8 81.0 56.0 106.
0 

5.8 103.0 60.0 

 

Results. The results for variations to the input age, body mass index (BMI), systolic blood pressure (SBP), and 
HbA1c in patients 1 and 2 are illustrated in Figures B.1 to B.4, respectively. 

Age 

A.  

 

B. 

 

C. 
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D. 

 

Figure B.1. Sensitivity analysis on the initial age for patient 1 (left) and patient 2 (right). Post-treatment outcomes 
predicted by MRC-GAN: A. BMI [kg/m^2]. B. DBP [mmHg]. C. SBP [mmHg]. D. HbA1c [mmol/mol]. Baseline 
age for each patient is shown by the dashed vertical line, and initial (pre-measurement) value for each feature 
shown by the dashed horizontal line.  

 

BMI 

 

A. 

 

B. 
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C. 

 

D. 

 

Figure B.2. Sensitivity analysis on the initial body mass index (BMI). Post-treatment outcomes predicted by 
MRC-GAN: A. BMI [kg/m^2]. B. DBP [mmHg]. C. SBP [mmHg]. D. HbA1c [mmol/mol]. 

 

Systolic blood pressure 

A. 

B. 
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C. 

 

D. 

 

Figure B.3. Sensitivity analysis on the initial systolic blood pressure (SBP). Post-treatment outcomes predicted 
by MRC-GAN: A. BMI [kg/m^2]. B. DBP [mmHg]. C. SBP [mmHg]. D. HbA1c [mmol/mol]. 

 

HbA1c 

 

A. 

B. 
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C. 

D. 

 

Figure B.4. Sensitivity analysis on the initial HbA1c. Post-treatment outcomes predicted by MRC-GAN: A. 
BMI [kg/m^2]. B. DBP [mmHg]. C. SBP [mmHg]. D. HbA1c [mmol/mol]. 

 

B.2. Memorization-informed distribution distance  

We have used a modification from the MiFID1 distance to measure the similarity between synthetic and real patient 
populations used for training. The new definition is called MiMMD (memorisation-informed MMD), which is 
based on the use of Maximum Mean Discrepancy (MMD)2 to measure the distribution distance between the real 
and synthetic data distributions. In addition to MMD, we take the sample memorization into account. The 
memorisation distance is defined as the minimum distance of a synthetic patient with the most similar individual 
in the real patient population. We have used cosine similarity to identify the most similar real patient and Euclidean 
distance to compute their difference.  MiMMD is then calculated by dividing MMD by the memorisation distance 

 
1 Bai, C. et al , On Training Sample Memorization: Lessons from Benchmarking Generative Modeling with a Large-scale Competition, 
KDD ’21, August 14–18, 2021, Virtual Event,  
2 Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A kernel two-sample test. Journal of 
Machine Learning Research, 13(Mar):723–773, 2012. 
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(to penalise too similar individual samples). The smaller MiMMD is, the better the synthetic populations are. Table 
B.2 shows the similarity of 6 synthetic sample cohorts towards the real patient population.  

Table B.2 MiMMD similarities between a real patient cohort and 6 synthetic sample cohorts 
 Memorisation Distance  MMD MiMMD 

Sample set 1 2.145 0.0694 0.0324 
Sample set 2 2.093 0.0726 0.0347 
Sample set 3 2.165 0.0669 0.0309 
Sample set 4 2.181 0.0702 0.0322 
Sample set 5 2.186 0.0677 0.0310 
Sample set 6 2.191 0.0656 0.0300 

B.3. Machine learning regression analysis with the confounding features 

Using the same experimental setup as in Section 2.2.3, we include the confounding features in the prediction of 
the post-features.  

Regression performance. We observe that, unsurprisingly, the performance of both real and synthetic RF models 
improves with the inclusion of the confounding features (i.e., age and pre-measurements). In particular, the 
synthetic RF model closely matches the real RF model in the prediction of BMI, where the fake predictions 
correlate strongly with the correct targets (𝑅c = 0.74, Table B.2). 

Table B.3: Regression performance of the real and synthetic RF models on a test set of real data. Outcomes align 
with those studied in the LEAD-5 trial. HbA1c: blood glucose [mmol/mol]. SBP: systolic blood pressure [mmHg]. 
DBP: diastolic blood pressure [mmHg]. BMI: body mass index [kg/m2]. 

 HbA1c SBP DBP BMI 
 𝑅c MSE 𝑅c MSE 𝑅c MSE 𝑅c MSE 
Real 0.209 344.89 0.421 134.92 0.415 47.13 0.814 4.23 
Synthetic 0.037 420.11 0.174 192.48 0.096 72.86 0.743 5.86 

 

Feature importance. When we examine the importance of the features used to make the above predictions, we 
observe that in all post-features the fake RF model correctly makes use of the corresponding pre-feature (e.g., 
pre-systolic BP is highly predictive of post-systolic BP).  

 

A 
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B 

 
C  

 
D 

 
Figure B.2. Ranking the most important features (descending order) used by the random forest models, trained on 
real (left) and synthetic (right) post-measurement and confounding data, for predicting the LEAD-5 outcomes: A. 
HbA1c. B. Systolic blood pressure. C. Diastolic blood pressure. D. BMI. Boxplots summarise the change in model 
performance over 10 random and independent permutations to each feature. The dashed line illustrates whether 
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removing the feature is likely to worsen performance (right-hand side) or improve performance (left-hand side), 
indicating that the feature is more or less important for predictions, respectively.  

  


